LC22MINI-CC-125-500

Helvar

22 W **SELV constant current** I FD driver

Product code: 5905

22 W 220 - 240 V 50 - 60 Hz

- SELV output protection for safety and flexibility in luminaires
- Low current ripple, complying with IEEE 1789 recommendation
- Suitable for use in emergency lighting applications
- Extremely compact dimensions for flexible usage
- Ideal solution for Class I and Class II luminaires

Functional Description

- Adjustable constant current output: 125 mA (default) to 500 mA
- Current setting via dip-switches
- Overload, open & short circuit protection

Mains Characteristics

Nominal rated voltage range 220 V - 240 V, 50 - 60 Hz Rated emergency voltage range 189 V - 255 V, 0 Hz AC voltage range 198 VAC - 264 VAC DC voltage range 170 VDC - 280 VDC Mains current at full load 0.10 - 0.12 A 50 Hz - 60 Hz Frequency Stand-by power consumption < 0.5 W

THD at full power < 15 %

Tested surge protection 4 kV L-GND (IEC 61000-4-5) 2 kV L-N (IEC 61000-4-5) Tested fast transient protection 2 kV (IEC 61000-4-4)

Insulation between circuits & driver case

Mains circuit - SELV circuit Double/reinforced insulation Double/reinforced insulation Mains and output - Driver case

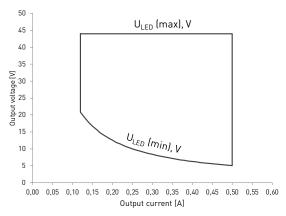
Load Output (SELV <60 V)

Output current (I_out) 125 mA (default) - 500 mA

Accuracy ±5%

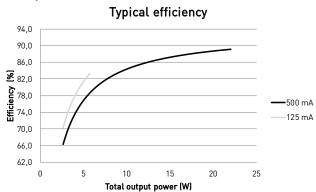
< 3 %* at ≤ 120 Hz Ripple

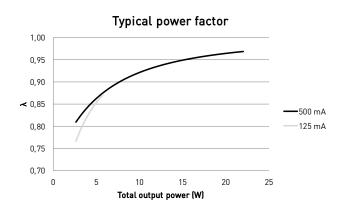
*) Low frequency, LED load: Cree XP-G LEDs


U_{out} (max) (abnormal) 59 V

EOF, (EL use) > 0.98 x output current with AC supply

I _{LED}	125 mA	500 mA
P _{Rated}	5.5 W	22 W
$U_{\mathtt{LED}}$	20 - 44 V	5 - 44 V
PF (λ) at full load	0.87	0.95
Efficiency (n) at full load	83 %	89 %



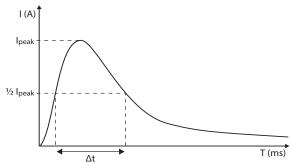

Operating window

Current value is adjustable in steps via dip-switch. See dip-switch settings in page 3 for details.

Driver performance

Operating Conditions and Characteristics

Absolute highest allowed t_r point temperature Tc life (50 000 h) temperature Ambient temperature range* Storage temperature range Maximum relative humidity Life time (90 % survival rate)


75 °C 75 °C -25 °C ... +50 °C* -40 °C ... +80 °C No condensation 100 000 h, at $t_c = 65 \, ^{\circ}\text{C}$ 70 000 h, at $t_c = 70 \, ^{\circ}\text{C}$ $50\,000\,h$, at $t_c = 75\,^{\circ}C$

Quantity of drivers per miniature circuit breaker 16 A Type C

Based on inrush current I _{peak}	Typ. peak inrush current I _{peak}	1/2 value time, ∆t	
85 pcs.	5 A	50 μs	

CONVERSION TABLE FOR OTHER TYPES OF MINIATURE CIRCUIT BREAKER

MCB type	Relative quantity of LED drivers
B 10 A	37 %
B 16 A	60 %
B 20 A	75 %
C 10 A	62 %
C 16 A	100 % (see table above)
C 20 A	125 %

CONTINOUS CURRENT

Total continous current of the drivers and installation environment must always be considered and taken into calculations when installing drivers behind miniature circuit breaker. Example calculation of total drivers amount limited by continous current: $I_{cont} = \{16 \text{ A} (I_{nom,Ta}) / \text{moninal mains current with full } \}$ load") x 0.76). This calculation is an example according to recommended precautions due to multiple adjacent circuit breakers (> 9 MCBs) and installation environment (T₃ 30 degrees); variables may vary according to the use case. Both inrush current and continous current calculations are based on ABB S200 series circuit breakers. More specific information in ABB series S200 circuit breaker documentation.

NOTE! Type C MCB's are strongly recommended to use with LED lighting. Please see more details in "MCB information" document in each driver product page in "downloads & links" section.

^{*)} For other than independent use, higher t_x of the controlgear possible as long as highest allowed t_c point temperature is not exceeded

Connections and Mechanical Data

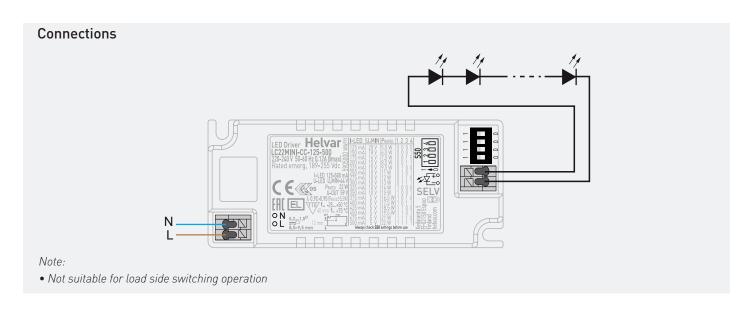
Wire size

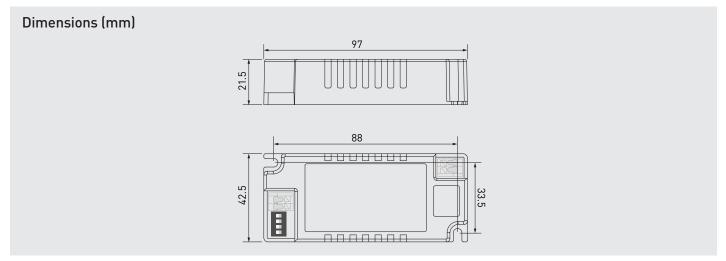
Wire type

Wire insulation

Maximum driver to LED wire length

Weight IP rating


1.5 m 86 g


0.2 mm² - 1.5 mm²

According to EN 60598

Solid core and fine-stranded

IP20

In LC22MINI-CC-125-500, the current can be set with dip-switches. With each combination of switch setup, a different output current value can be set. The maximum value can be reached with all switches set to "1" (pushed towards the label, see connections picture above) and minimum with all switches set to "0". The output current values according to the dip-switch settings are presented below.

Dip-switch combinations, output currents and voltage ranges (Nominal I_{out} (±5 % tol.))

Dip-Switch combination	1111	1110	1101	1100	1011	1010	1001	1000
I _{out} (mA)	500	475	450	425	400	375	350	325
Voltage range	5 - 44 V	10 - 44 V	10 - 44 V					
Dip-Switch combination	0111	0110	0101	0100	0011	0010	0001	0000
I _{out} (mA)	300	275	250	225	200	175	150	125
Voltage range	10 - 44 V	10 - 44 V	10 - 44 V	15 - 44 V	15 - 44 V	16 - 44 V	18 - 44 V	20 - 44 V

Information and conformity

LC22MINI-CC-125-500 LED driver is suited for built-in usage in luminaires. In order to have safe and reliable LED driver operation, the LED luminaires will need to comply with the relevant standards and regulations (e.g. IEC/EN 60598-1). The LED luminaire shall be designed to adequately protect the LED driver from dust, moisture and pollution. The luminaire manufacturer is responsible for the correct choice and installation of the LED drivers according to the application and product datasheets. Operating conditions of the LED drivers may never exceed the specifications as per the product datasheet.

Installation & operation

Maximum ambient and t temperature:

- For built-in components inside luminaires, the t_a ambient temperature range is a guideline given for the optimum operating environment. However, integrator must always ensure proper thermal management (i.e. mounting base of the driver, air flow etc.) so that the t_c point temperature does not exceed the t_c maximum limit in any circumstance.
- Reliable operation and lifetime is only guaranteed if the maximum t point temperature is not exceeded under the conditions of use.

Current setting via Dip-Switch

LC22MINI-CC-125-500 LED driver features a constant current output adjustable via Dip-switch combinations

For the combination/current values, refer to the table on page 3.

Miniature Circuit Breakers (MCB)

- Type-C MCB's with trip characteristics in according to EN 60898 are recommended.
- Please see more details in "MCB information" document in each driver product page in "downloads & links" section.

Lamp failure functionality

No load

When open load is detected, driver limits output voltage according to Uout (max) (abnormal).

Overload

Driver can withstand overload, however reliable operation is only guaranteed in specified voltage range.

Short circuit

Driver can withstand output short circuit.

Conformity & standards

General and safety requirements	EN 61347-1: 2015		
Particular safety requirements for DC	EN 61347-2-13: 2014 +		
or AC supplied electronic control gear	A1: 2017		
for LED modules			
Additional safety requirements for AC	EN 61347-2-13: 2014 +		
or DC supplied electronic controlgear	A1:2017, Annex J		
for emergency lighting			
Thermal protection class	EN 61347, C5a		
Mains current harmonics	EN 61000-3-2		
Limits for voltage fluctuations and	EN 61000-3-3		
flicker			
Radio frequency interference	EN 55015		
Immunity standard	EN 61547		
Performance requirements	EN 62384: 2006+		
	A1:2009		
Recommended Practices for	IEEE 1789-2015		
Modulating Current in High-Brightness			
LEDs for Mitigating Health Risks to			
Viewers			
Compliant with relevant EU directives			
RoHS/REACH compliant			
ENEC and CE marked			

Label symbols

Safety isolating control gear with short circuit protection (SELV control gear).

Thermally controlled control gear, incorporating means of protection against overheating to prevent the case temperature under any conditions of use from exceeding 110 °C.

AC/DC supplied electronic control gear for emergency lighting purposes intended for connection to a centralized emergency power supply.